skip to main content


Search for: All records

Creators/Authors contains: "McCouch, Susan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.

    Results

    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.

    Conclusions

    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

     
    more » « less
  2. Abstract

    As sequencing and genotyping technologies evolve, crop genetics researchers accumulate increasing numbers of genomic data sets from various genotyping platforms on different germplasm panels. Imputation is an effective approach to increase marker density of existing data sets toward the goal of integrating resources for downstream applications. While a number of imputation software packages are available, the limitations to utilization for the rice community include high computational demand and lack of a reference panel. To address these challenges, we develop the Rice Imputation Server, a publicly available web application leveraging genetic information from a globally diverse rice reference panel assembled here. This resource allows researchers to benefit from increased marker density without needing to perform imputation on their own machines. We demonstrate improvements that imputed data provide to rice genome-wide association (GWA) results of grain amylose content and show that the major functional nucleotide polymorphism is tagged only in the imputed data set.

     
    more » « less
  3. Abstract

    HighCO2and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis‐related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification ofINDICA/INDICA‐like andJAPONICApopulations. Overall, we find that the productivity of plants grown under elevated [CO2] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2] across this diversity panel. We report differential response toCO2× temperature interaction forINDICA/INDICA‐like andJAPONICArice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation.

     
    more » « less